# MoreDat

A Student Network for Collaboration and Sharing

Signup on MoreDat.com

What’s Next For Electronic Devices. Have you heard of FPGAs? Find out now here. And as a bonus get your free guide to writing a successful resume. Just Signup now and it’s all yours free.

This Blog is all about math of all kinds.  We will seek to provide you with lots of math information including links to many math tutorials, most of which are videos.  Let us know if you are looking for anything in particular about math.

Math is Power for You video tutorials  Great selection of videos on a wide variety of math subjects

Introduction to Calculus by Professor David Jerison

This Calculus course covers differentiation and integration of functions of one variable, and concludes with a brief discussion of infinite series.  Calculus is fundamental to many scientific disciplines including physics, engineering, and economics.

1. Lecture 1 What is a Derivative - Notes for Lecture 1
2. Lecture 2 Limits - Notes for Lecture 2
3. Lecture 3 Derivatives - Notes for Lecture 3
4. Lecture 4 Chain Rule - Notes for Lecture 4
5. Lecture 5 Implicit Differentiation - Notes for Lecture 5
6. Lecture 6 Exponential and Log - Notes for Lecture 6
7. Lecture 7 Hyperbolic Functions - Notes for Lecture 7
8. No Lecture 8
9. Lecture 9 Linear and Quadratic Approximations - Notes
10. Lecture 10 Curve Sketching - Notes
11. Lecture 11 Max and Min - Notes
12. Lecture 12 Related Rates - Notes
13. Lecture 13 Newton's Method - Notes
14. Lecture 14 Mean Value Theorem - Notes
15. Lecture 15 Antiderivatives - Notes
16. Lecture 16 Differential Equations - Notes
17. No Lecture 17
18. Lecture 18 Definite Integrals - Notes
19. Lecture 19 First Fundamental Theorem - Notes
20. Lecture 20 Second Fundamental Theorem - Notes
21. Lecture 21 Applications to Logarithms - Notes
22. Lecture 22 Volumes - Notes
23. Lecture 23 Work, Probability - Notes
24. Lecture 24 Numerical Integration - Notes
25. Lecture 25 Exam #3 Review - Notes
26. No Lecture 26
27. Lecture 27 Trig Integrals - Notes
28. Lecture 28 Inverse Substitution - Notes
29. Lecture 29 Partial Fractions - Notes
30. Lecture 30 Integration by Parts - Notes
31. Lecture 31 Parametric Equations - Notes
32. Lecture 32 Polar Coordinates - Notes
33. Lecture 33 Exam #4 Review - Notes
34. No Lecture 34
35. Lecture 35 Indeterminant Forms - Notes
36. Lecture 36 Improper Integrals - Notes
37. Lecture 37 Infinite Series - Notes
38. Lecture 38 Taylor's Series - Notes
39. Lecture 39 Final Review - Notes

Differential Equations by Professor Arthur Mattuck at MIT

1. Lecture 1
2. Lecture 2 Euler's Numerical Method
3. Lecture 3 Solving First-Order Linear ODE's
4. Lecture 4 First-Order Substitution Methods
5. Lecture 5 First-Order Autonomous ODE's
6. Lecture 6 Complex Numbers and Complex Exponentials
7. Lecture 7 First-order Linear with Constant Coefficients
8. Lecture 8 Applications to Temperature, Mixing, RC-Circuits, Decay and Growth Models
9. Lecture 9 Solving Second-Order Linear ODE's with Constant Coefficients
10. Lecture 10 Complex Characteristic Roots
11. Lecture 11 Theory of General Second-Order Linear Homogeneous ODE's
12. Lecture 12 General Theory for Inhomogeneous ODE's
13. Lecture 13 Finding Particular Solutions to Inhomogeneous ODE's
14. Lecture 14 Interpretation of the Exceptional Case: Resonance

Views: 54

Comment

Join MoreDat